

From Visual Inspection To Causal Discovery

April 2022, Nijmegen

Ali Bahramisharif

OUTLINE

INTRODUCTION

CAUSALITY AND EXPLAINABILITY

VISION AND INSPECTION

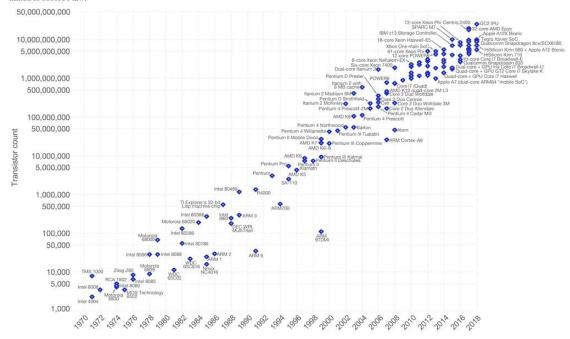
COOL STUFF

CONCLUSION

MOORE'S LAW

Moore's Law – The number of transistors on integrated circuit chips (1971-2018)

Moore's law describes the empirical regularity that the number of transistors on integrated circuits doubles approximately every two years. This advancement is important as other aspects of technological progress – such as processing speed or the price of electronic products – are linked to Moore's law.



Data source: Wikipedia (https://en.wikipedia.org/wiki/Transistor_count)
The data visualization is available at OurWorldinData.org. There you find more visualizations and research on this topic.

Licensed under CC-BY-SA by the author Max Roser.

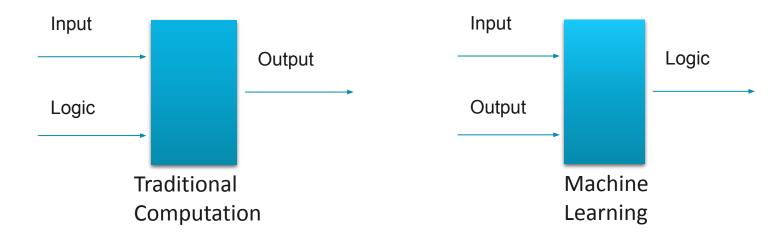
The number of transistors in a dense integrated circuit doubles about every two years.

DATA NEVER SLEEPS 8.0

How much data is generated every minute?

in 2020, the world charged fundamentally—and so did the data that makes the world go round. As COTION 19 west the globbe, meanly very appeat of life—from work to working out—moved online, and people depended more and more on apps and the returned to sociation, educate and emercian outrieves. Before guarantine, just 1950 of Americans worked from home. Now over half do. And that's not the enty beginning to use the addition of Data Never Seeps, we bring you the lates state, on how much data is being created in every right an insure. — and that shows no age of stooping.

MACHINE LEARNING



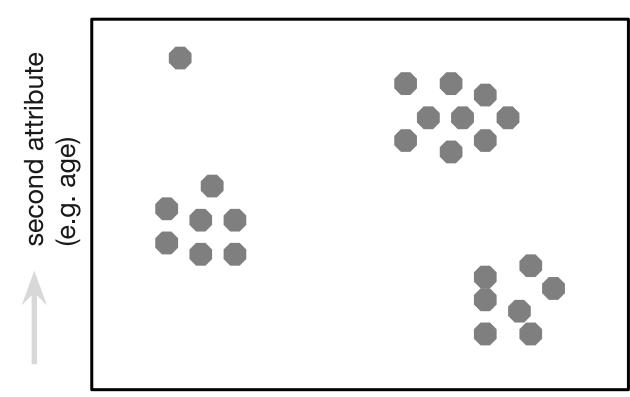
Attributes

	ļ	Ď	
	Ċ	3	
	Ò	D	
			٠
	(2	
(
	_		

Tid	Refund	Marital Status	Taxable Income	Cheat
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

Machine2Learn © 2022

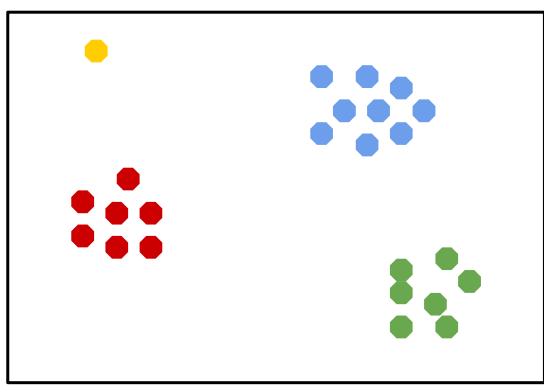
ATTRIBUTES



first attribute (e.g. income)

CLUSTERS

second attribute



first attribute

10



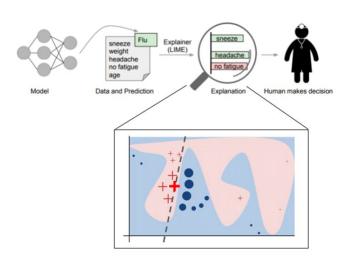
Machine2Learn © 2022

EXPLAINABILITY

"Why Should I Trust You?" Explaining the Predictions of Any Classifier

Marco Tulio Ribeiro University of Washington Seattle, WA 98105, USA marcotcr@cs.uw.edu Sameer Singh University of Washington Seattle, WA 98105, USA sameer@cs.uw.edu

Carlos Guestrin University of Washington Seattle, WA 98105, USA guestrin@cs.uw.edu





EXPLAINABILITY

Covariates

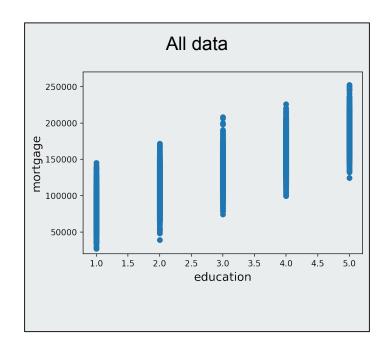
Marital Status

Education

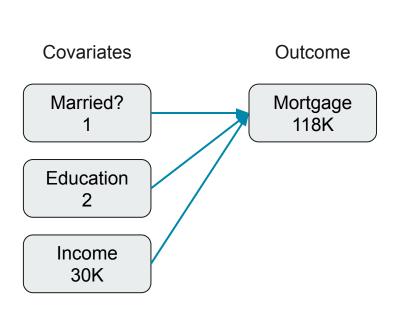
Income

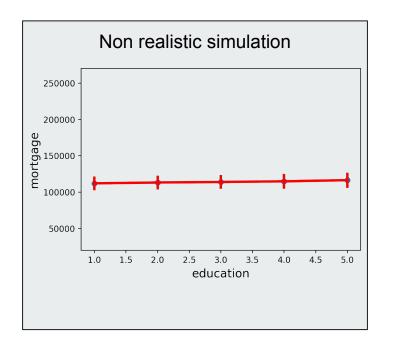
Outcome

Mortgage Amount

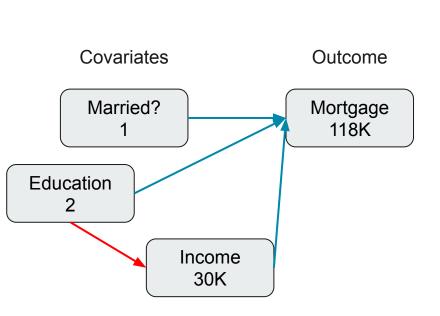


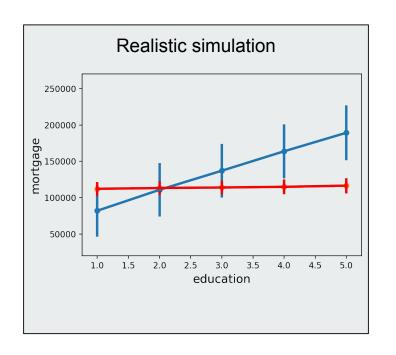
EDUCATION/MORTGAGE





CAUSALITY BASED EXPLAINABILITY





EXPLAINABILITY

Home Login Log Out

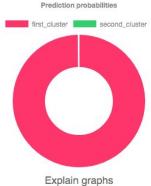
Features values

Feature	▲ Value	
x1	-5	
x2	2.01593	
х3	2.21147	

Showing 1 to 3 of 3 entries

Explain

Prediction probabilities

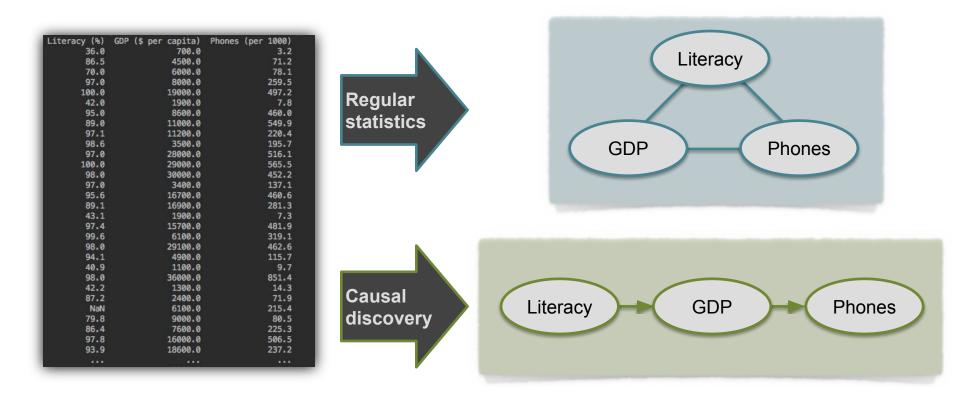


Explain graphs

NOT first_cluster | first_cluster | x1 <= -0.95

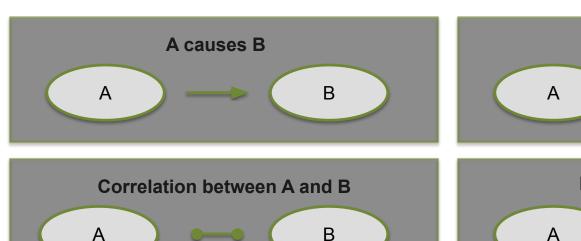
-0.96 < x3 <= 2.21 -1.00 < x2 <= 2.02

CAUSAL DISCOVERY

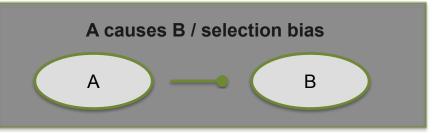


CAUSAL RELATIONS

В

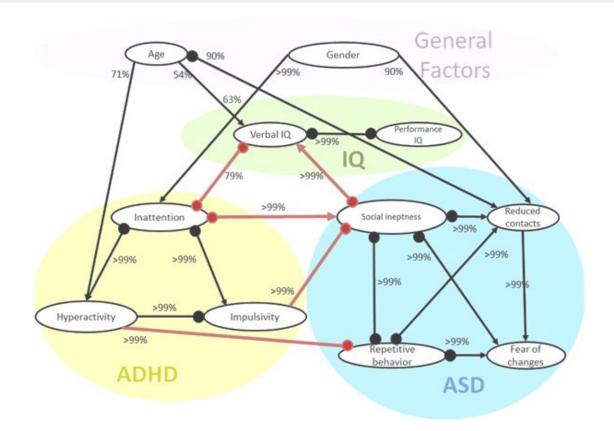


Selection bias

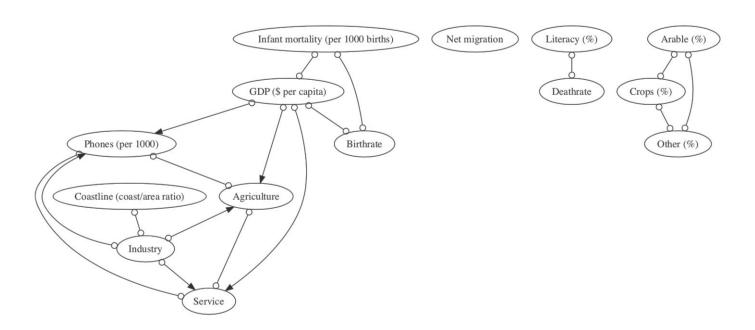


Α

MEDICAL DATASET

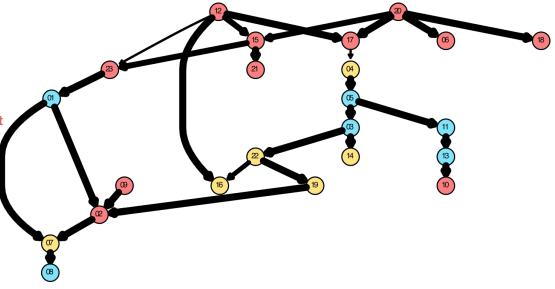


ECONOMIC DATASET

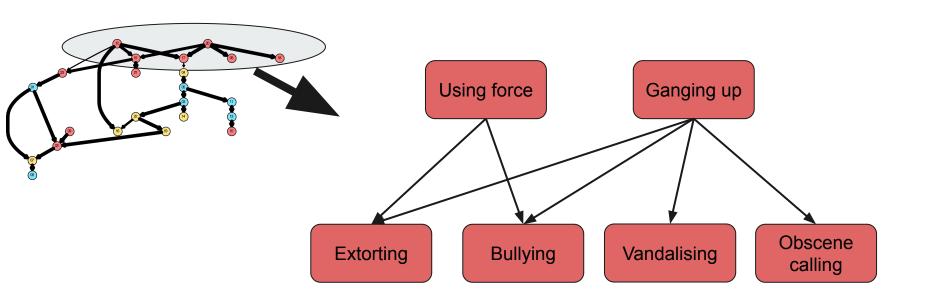


QUESTIONNAIRE

- 1. Yelled at others when they have annoyed you
- 2. Had fights with others to show who was on top
- 3. Reacted angrily when provoked by others
- 4. Taken things from other students
- 5. Gotten angry when frustrated
- 6. Vandalized something for fun
- 7. Had temper tantrums
- 8. Damaged things because you felt mad
- 9. Had a gang fight to be cool
- 10. Hurt others to win a game
- 11. Become angry or mad when you don't get your way
- 12. Used physical force to get others to do what you want
- 13. Gotten angry or mad when you lost a game
- 14. Gotten angry when others threatened you
- 15. Used force to obtain money or things from others
- 16. Felt better after hitting or yelling at someone
- 17. Threatened and bullied someone
- 18. Made obscene phone calls for fun
- 19. Hit others to defend yourself
- 20. Gotten others to gang up on someone else
- 21. Carried a weapon to use in a fight
- 22. Gotten angry or mad or hit others when teased
- 23. Yelled at others so they would do things for you



QUESTIONNAIRE



VISION AND INSPECTION

M2L IMPLEMENTATION CYCLE

AKZONOBEL

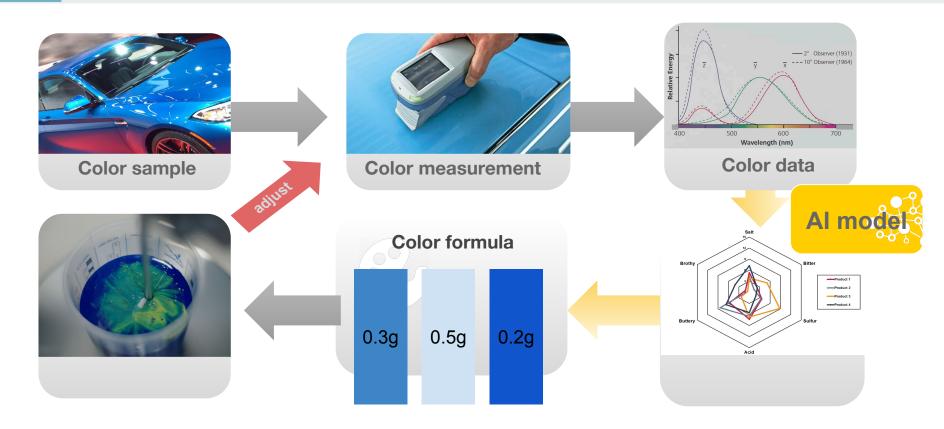
Problem Description

Current State

Machine2Learn © 2022

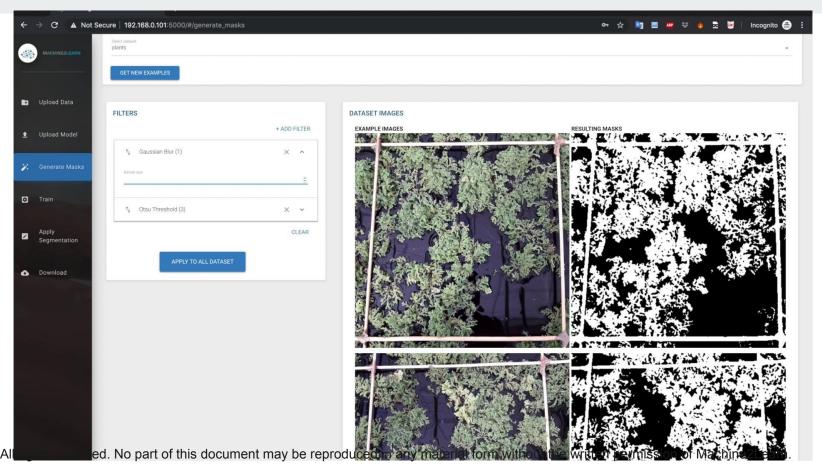
PROBLEM DESCRIPTION

CURRENT STATE

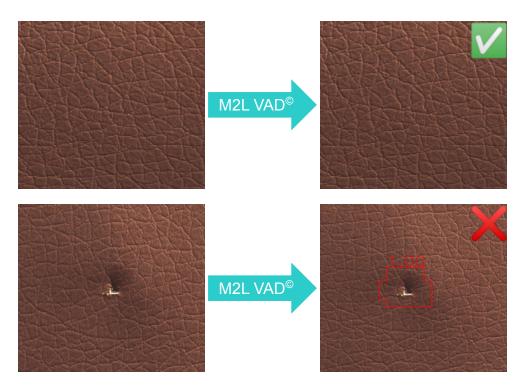


COOL STUFF

GREEN SEGMENTATION



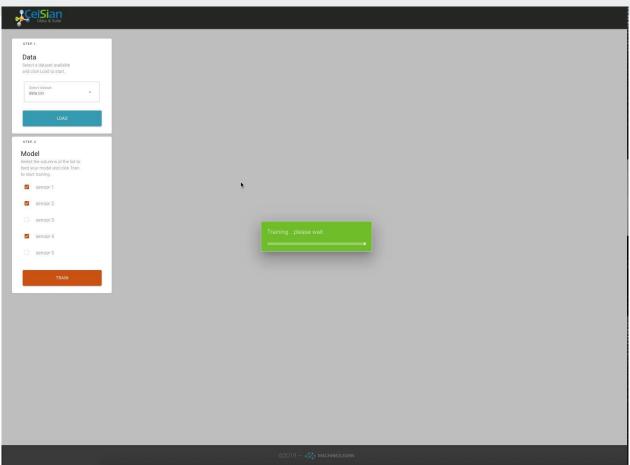
VISUAL ANOMALY DETECTION



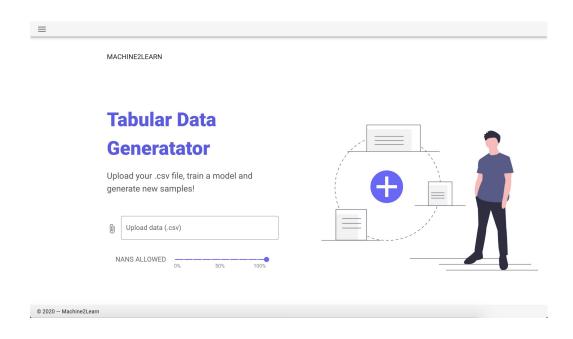
http://anomaly.machine2learn.com

Machine2Learn © 2022

ANOMALY PREVENTION



DATA GENERATION



ROBOT NAVIGATION

MUSIC GENRE TRANSFER

IMAGE STYLE TRANSFER

Machine2Learn © 2022

MUSIC GENRE TRANSFER

Content Musical Piece	Styl	e (Musical Piece)	Out	put Musical Piece
Metallica's Master of Puppets	+	Beethoven's 5th Symphony	=	Beethoven's Master of Puppets?
		OR		
Stevie Wonder's Isn't She Lovely	+	Hip-hop	=	Hip-hoppy Isn't She Lovely?

METALLICA-ENTER SANDMAN JAZZ

EXAMPLE EUROPOP TO SOUL

Source

Transfer

TAKE HOME MESSAGES

Deep learning is cool, especially for computer vision.

Explainability / transparency is essential for gaining trust.

Causal inference if you care about the effect of interventions.

Empowering Smart Industry

MACHINE2LEARN

machine2learn.com

+31 20 21 171 41
Bijlmerdreef 101
1102 BP, Amsterdam
info@machine2learn.nl

