# CRISPR/Cas and Genome Editing

From Molecule to Business - Drug Discovery re-invented

Pivot Park, Oss - Thursday 30 Sept 2021

Rick Wansink, PhD
Dept. of Cell Biology
rick.wansink@radboudumc.nl



#### **Genome editing – Gene editing – Genome surgery**

.... is a type of genetic engineering in which DNA is inserted, deleted, modified or replaced in the genome of a living organism.



- Loss
- Gain
- Replacement







## CRISPR: <u>Clustered Regularly Interspaced Short Palindromic Repeats</u>

Cas9: <u>CRISPR-associated</u> system





- Efficient
- Active
- Precise
- Cheap
- Reliable
- Versatile
- Easy to implement

### A CRISPR/Cas-induced double strand break must be repaired





common, error prone, unpredictable **NHEJ** 

indels

rare (only in S/G2)
precise,
reliable
HDR

replacement

## Common difficulties and pitfalls of CRISPR/Cas



- Off-target effects
- Low incidence HDR
- Delivery (plasmid, RNPs, virus, nanoparticles)
- Cutting efficiency
- GuideRNA design (PAM sequence)
- Immunogenicity of Cas9
- Risks of germline editing (ethics)

### An explosion of possibilities: CRISPR/Cas variations



- Ds versus ss break
- Different PAM sequences
- Different cut sites
- Smaller Cas enzymes
- Cas13: targets RNA instead of DNA

- Prime editing: nickase + reverse transcriptase
- Base editing: nickase + base editor (point mutations)

# dCas: Your guide to the genome



- Transcriptional activators
- Transcriptional repressors
- Epigenetic enzymes
- Fluorescent labels
- Small tags
- Etc.

Note: permanent vs transient effects

#### **Applications**



- Knockout genes in your favourite cell type
- Development of disease models (e.g. iPSCs, animals)
- Unbiased genome-scale screens
- Diagnostics (cleavage- or binding-based Cas biosensing assays)
- Therapeutic strategies ex/in vivo

#### Responsible gene editing in humans

#### Ex vivo



- T cells in cancer patients multiple trials ongoing
- β-thalassemia, sickle cell disease trials ongoing

#### In vivo



- Transthyretin amyloidosis (NEJM 2021)
- Leber's congenital amaurosis (eye disease)
  removal of a point mutation in CEP290)
  first patient treated in April 2020
- Mucopolysaccharidosis type II trial ongoing?

#### Own research: RNA toxicity in myotonic dystrophy type 1







anticipation

I = normal

II = pre-mutation/late onset

III = adult onset/childhood onset

IV = congenital

- Repeat in 3' UTR, so does **not** affect *DMPK* protein-coding information
- RNA-mediated disease mechanisms -> expanded (CUG)n RNA is toxic to cells

# (1) Remove expanded (CTG)n repeat through dual CRISPR/Cas9 cleavage



# (2) Silence *DMPK* transcription initiation by dCas9-repressor fusion protein



**CRISPR** activation

CRISPR interference





Raaijmakers et al. IJMS, 2019

Rick Wansink, PhD
Dept. of Cell Biology
rick.wansink@radboudumc.nl

Institute for Molecular Life Sciences

Radboudumc